(i) Answer all questions. (ii) $B_{r}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}$. (iii) $\mathbb{H}=$ upper half plane. (iv) $C_{r}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=r\right\}$. (v) $\mathbb{A}_{1,2}(0)=\{z \in \mathbb{C}: 1<|z|<2\}$.

1. Let $f: \mathbb{C} \rightarrow \mathbb{H}$ be a holomorphic function. Prove that f is a constant.

Answer: Consider $g: \mathbb{C} \rightarrow \mathbb{C}$ defined by $g(z)=e^{i f(z)}$. Clearly, g is holomorphic on \mathbb{C} as f is so. Let $f=u+i v$. Then $v=\operatorname{Im}(f) \geq 0$. Now for all $z \in \mathbb{C}$

$$
|g(z)|=\left|e^{(-v+i u)}\right|=e^{-v} \leq 1
$$

as $v \geq 0$. Therefore g is a bounded entire function. So by Liouville's theorem, g is constant and hence f is constant.
2. Let $f: B_{1}(0) \rightarrow B_{1}(0)$ be a holomorphic function. Let $\alpha \in B_{1}(0)$ and $f(\alpha)=0$. Prove that $|f(0)| \leq|\alpha|$.

Answer: For $|\alpha|<1$, consider $\phi_{\alpha}=\frac{\alpha-z}{1-\bar{\alpha} z}$. Let $g=f \circ \phi_{\alpha}$. Then $g: B_{1}(0) \rightarrow B_{1}(0)$ is analytic. Also $g(0)=f\left(\phi_{\alpha}(0)\right)=f(\alpha)=0$. By Schwarz lemma, we have $|g(z)| \leq|z|$ for all $z \in B_{1}(0)$. Put $z=\alpha$, we have $g(\alpha)=f\left(\phi_{\alpha}\right)=f(0)$. Therefore $|f(0)| \leq|\alpha|$.
3. Let $g(z)=f\left(z^{3}\right)$ where $f \in \operatorname{Hol}(\mathbb{C})$ and f is not identically zero. Prove that

$$
\operatorname{Res}\left[\frac{1}{g} ; 0\right]=0 .
$$

Answer: Since $f \in \operatorname{Hol}(\mathbb{C}), g$ is so. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Therefore $g(z)=\sum_{n=0}^{\infty} a_{n} z^{3 n}$. It is enough to show that the coefficient of $\frac{1}{z}$ of the Laurent series expansion of $\frac{1}{g}$ at zero is zero. If for some $m \geq 0, a_{m} \neq 0$ then

$$
\frac{1}{g}=z^{-3 m}\left(a_{m}+a_{m+1} z^{3}+a_{m+2} z^{6}+\ldots\right)^{-1}
$$

Clearly there does not have any $\frac{1}{z}$ term in the series expansion. Hence Res $\left[\frac{1}{g} ; 0\right]=0$.
4. Prove that $f(z)=2-z-e^{-z}$ has one root in the right half plane.

Answer. Let $h(z)=2-z$ and $g(z)=-e^{-z}$ for $z \in \mathbb{C}$. Clearly h, g are holomorphic on an open set containing circle $C_{1}(2)$ with centre 2 and radius 1. Also for $x>0$ where $z=x+i y$

$$
|h(z)|=1>e^{-x}=|g(z)|
$$

for $z \in C_{1}(2)$. Hence by Rouché's theorem, h and $h+g$ have the same number of zeros inside the circle $C_{1}(2)$. But h has one zero inside the circle and hence $h+g=f$ has one root inside the circle. This proves that f has one root in the right half plane.
5. Let $f \in \operatorname{Hol}(\mathbb{C})$ and $f(0)=0$, and $f^{\prime}(0)=1$ and suppose that $|f(z)| \leq 1$ for all $z \in C_{1}(0)$. Show that $f(z)=z$ for all $z \in \mathbb{C}$.

Answer. Since $|f(z)| \leq 1$ for all $z \in C_{1}(0)$, using Maximum modulus principle we have $|f(z)| \leq 1$ for all $z \in \overline{B_{1}(0)}$. Consider $g=\left.f\right|_{B_{1}(0)}$. Then $g(0)=0$ and $g^{\prime}(0)=1$. By Schwarz
lemma we have $g(z)=z$ for all $z \in B_{1}(0)$. Therefore $f(z)=z$ for all $z \in B_{1}(0)$. Hence by identity theorem we have $f(z)=z$ for all $z \in \mathbb{C}$.
6. Use the residue theorem to compute the following integral

$$
\int_{-\infty}^{\infty} \frac{1}{x^{2}+1} d x
$$

Answer. Let $f(z)=\frac{1}{z^{2}+1}$. Then $z=i,-i$ are the poles of f. Let $R>1$ be any real number. Let γ be a closed curve bounded by the upper half circle with radius R and the interval $[-R, R]$ on the real axis. Then by Residue formula we have

$$
\int_{\gamma} f=2 \pi i(\operatorname{Res}(f, i))=2 \pi i\left(\frac{1}{2 i}\right)=\pi
$$

where $\operatorname{Res}(f, i)=\lim _{z \rightarrow i}(z-i) \frac{1}{z^{2}+1}=\frac{1}{2 i}$.
Again

$$
\int_{\gamma} \frac{1}{z^{2}+1} d z=\int_{-R}^{R} \frac{1}{x^{2}+1} d x+\int_{0}^{\pi} \frac{i R e^{i \theta}}{R^{2} e^{2 i \theta}+1} d \theta
$$

Now $\left|\int_{0}^{\pi} \frac{i R e^{i \theta}}{R^{2} e^{2 i \theta}+1} d \theta\right| \leq \frac{R \pi}{R^{2}-1}$ which is tending to zero as $R \rightarrow \infty$. Hence from the above we have

$$
\int_{-\infty}^{\infty} \frac{1}{x^{2}+1} d x=\pi
$$

7. Prove there does not exist a branch of $\log \left(z^{2}-1\right)$ on $\mathbb{C} \backslash[-1,1]$.

Answer: Let Logz be the principal branch of $\log z$. Then Logz is analytic on the region $\mathbb{C} \backslash(-\infty, 0]$ i.e. $\mathbb{C} \backslash\{z=x+i y:-\infty<x \leq 0 \& y=0\}$. Now $\left(z^{2}-1\right)=x^{2}-y^{2}-1+i(2 x y)$. So $\log \left(z^{2}-1\right)$ is not analytic on $\left\{z=x+i y:-\infty<x^{2}-y^{2}-1 \leq 0 \& 2 x y=0\right\}$. That is $\log \left(z^{2}-1\right)$ is not analytic on $\{z=x+i y: x=0 \& y \in \mathbb{R}\} \bigcup[-1,1]$. Therefore there does not exist a branch of $\log \left(z^{2}-1\right)$ on $\mathbb{C} \backslash[-1,1]$.
8. Prove or disprove (with justification):
(i) There exist $f \in \operatorname{Hol}(\mathbb{C} \backslash\{0\})$ such that $f(z)^{2}=z$ for all $z \in \mathbb{C} \backslash\{0\}$.
(ii) There exist $f \in \operatorname{Hol}\left(\mathbb{A}_{1,2}(0)\right)$ such that $f(z)^{2}=z$ for all $z \in \mathbb{A}_{1,2}(0)$.

Answer. Both the cases there does not exist any function f such that $f(z)^{2}=z$.
Suppose if possible $f \in \operatorname{Hol}\left(\mathbb{A}_{1,2}(0)\right)$ such that $f(z)^{2}=z$ for all $z \in \mathbb{A}_{1,2}(0)$. Then

$$
2 f(z) f^{\prime}(z)=1
$$

Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be a simple closed curve around the origin. Then $f(\gamma)$ is also closed and

$$
\int_{\gamma} \frac{1}{z} d z=2 \pi i .
$$

Now

$$
\int_{f(\gamma)} \frac{1}{z} d z=\int_{0}^{1} \frac{f^{\prime}(\gamma(t)) \gamma^{\prime}(t)}{f(\gamma)} d t=\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\int_{\gamma} \frac{1}{2 z} d z=\pi i
$$

which is not possible as $f(\gamma)$ is closed. Hence there does not exists $f \in \operatorname{Hol}\left(\mathbb{A}_{1,2}(0)\right)$ such that $f(z)^{2}=z$ for all $z \in \mathbb{A}_{1,2}(0)$.

Therefore there does not exist $f \in \operatorname{Hol}(\mathbb{C} \backslash\{0\})$ such that $f(z)^{2}=z$ for all $z \in \mathbb{C} \backslash\{0\}$.

